The World of GMOs: How it Relates to Beekeeping
American Bee Journal (2003)Vol. 134 (Five parts: April, May, June, August, September)
By
Dr. Malcolm T. Sanford
Introduction:
Beekeepers, like everyone else, will be affected by what is being called the “third industrial revolution.” The first industrial revolution was use of new sources of energy to produce goods and services. The second involved information theory. That is now maturing as part of the “information” age, and is based on use of digital computers in almost all the trappings of “modern” life. The third is “genetic engineering,” using aspects of the other two in conjunction with recent scientific developments to directly manipulate the components of biological life. The products issuing from the third revolution are called “genetically modified organisms” or GMOs. This opens up a whole new universe of possibility for agriculture and by extension apiculture.
At first glance the world of GMOs appears to be nothing more what humans have done for centuries as they evolved from stone- and bronze-age tool makers to modern agriculturalists. Through observation and advances pioneered by Gregor Mendel1 and others, scientists and farmers have deliberately modified life forms. This includes everything from plants to dogs to honey bees. Examples include perhaps humanity’s most valuable food crop, corn (Zea mays), developed by combining desirable traits from a number of native grass relatives (maize, teosinte). Any dog show reveals the huge number of forms breeders have come up with, from the live-saving St. Bernard to the performing poodle.
Honey bees too have been genetically modified for centuries,
either on purpose or accidentally, usually through unwitting or purposeful
introduction. All honey bees in the New
World are the result of either direct introductions from the
Many technologists and others involved in developing GMOs would have everyone believe that what they are doing is the same activity described above for dogs and bees. This contention is a generalization that contains a solid germ of truth, but leaves out many details. The picture is much more complex, because along with genetic engineering, there are other revolutions occurring, which make the situation far different than that of either the traditional plant or animal breeder agriculturalist of the recent past.
Agriculture, as it is effected both by the first and second industrial revolutions, has transformed into another entity known as “agribusiness” in most of the First world. At the same time, corporate wealth and power have been added to this mix. The combination of corporations and agriculture has put into play huge forces that are producing a synergy of unknown proportions. Adding the principles of genetic engineering provides even greater power that proponents view as generally beneficial, while opponents see as quite risky.
Beekeepers are not immune from issues affecting modern agribusiness.3 Genetic engineering is being investigated to modify honey bee populations themselves, and the honey bee is a major pollinator and beneficiary of both nectar- and pollen-producing plants that are also undergoing modification. This series of articles is designed to give the reader a broad history of GMOs and how this relates to contemporary agriculture. It is written to provide a structure for further inquiry from a beekeeper’s perspective.
Genotype and Phenotype:
The genesis for the term genetic engineering is the word “gene,” a bit of hereditary material many have called the basis of life.4 Genes are responsible for the manufacture of substances (chemical compounds) that make up an organism; they are particular parts or regions of structures called chromosomes. Chromosomes can be seen in most cells enclosed within the part of the cell known as the nucleus. Cells divide under direction of the nucleus to produce more cells resulting in growth. The division of the nucleus coincides with first the replication of the chromosomes into pairs, followed by their separation. The resultant two new cells then both have the same complement of chromosomes and their accompanying genes.
With the invention of the microscope, credited to Antony Van Leeuwenhoek,5 chromosomes could readily be seen in the nucleus of cells and their replication and separation monitored. In some cases, such as fruit flies, the chromosomes are very large, and observers noticed certain regions or genes that were active and could be associated with specific characteristics of the resulting organism.6 The genes of fly chromosomes were correlated with eye and body color or wing size and shape. When these characteristics were seen or visualized, the responsible genes were said to be “expressed” (revealed). All genes in an organism collectively are called the genotype. The characteristics expressed by the genotype are collectively called the phenotype.7
The phenotype is what beekeepers see as structure and function in bees. For example, that of the Italian honey bee (Apis mellifera ligustica) includes a yellowish light colored body, a specific tongue and wing length, and all the other characteristics it shares with other honey bees, as well as insects, including six legs, three body parts and two pair of wings. Another part of the phenotype is the observable behavior of the Italian honey bee such as its propensity to rob or to develop a large brood nest throughout the year. The latter characteristic may contribute to an increase in swarming or dividing when conditions are optimal and overpopulation is possible, or starvation, should resources in the field be limited by weather conditions resulting in a lack of food to support all individuals in the growing population.
The traditional classification of honey bees has been by
phenotype. Thus, Italian, Carniolan (Apis mellifera carnica), Caucasian
(Apis mellifera caucasica) and the German or dark bee (Apis mellifera mellifera) have been separated by measuring and
comparing the differences in their body parts (predominantly wing length and
vein structure). This is called morphometrics; it is the current way Africanized honey bees
(Apis mellifera scutellata) in the
DNA and RNA Structure and Function:
DNA is an acronym for DeoxyriboNucleicAcid.9 It is the basic molecule that constitutes chromosomes and their associated genes for all organisms, from bacteria to honey bees to humans. DNA structure was first described by James Watson and Francis Crick in 1953.10 The describers characterized it as a “double helix,” and Dr. Watson wrote a book of the same name detailing a fascinating story of how the structure was finally determined. It has been fifty years since the characterization of DNA, and during that time, scientists have learned a great deal about the basic genetic structure of organisms and how it works. With this basic knowledge in place, it was only a matter of time before inquiring minds took steps to experiment with this technology by copying (cloning), and then clipping and moving (recombining) bits of DNA within and among organisms. The consequences of this tinkering, known as genetic engineering, are what we now know as genetically modified organisms (GMOs).
DNA is one type of nucleic acid. There is another, (RiboNucleicAcid) or RNA. Both nucleic acids are not just chemical compounds, they also provide information. The chemical logic of life is described as the following by Murrell and Roberts:11
In the above description it is helpful to remember that most proteins are generally chemical compound types known as enzymes, which are responsible for regulating the speed of life processes (chemical reactions). Other proteins include antibodies, hormones and muscle fibers. Amino acids are basic nutritional resources needed by organisms to form proteins. These have often been called the body’s “building blocks.” There are 20 amino acids in nature.12 They must be either manufactured in the body or be acquired from an outside source.
Another way of looking at this is in computer terms, according to Murrell and Roberts . The nucleic acids are the software (program) that generates the proteins (hardware). The proteins then become the physical apparatus that executes the program (growth) as determined by the nucleic acid software.
Nucleic acids interact with each other in a specific way. DNA acts as a template. Its information is made available (transcripts) to an RNA template, which is called messenger RNA (mRNA). The mRNA determines (translates) the order of amino acids to make specific proteins. The “genetic code,” therefore, is a set of rules or instructions where DNA determines the order of amino acids to make proteins via mRNA. This is accomplished by the sequence of the nucleic acids’ respective nucleotides.
Only four nucleotides constitute the nucleic acids. Each nucleotide is characterized by a specific compound known as a “base.” The bases for DNA are adenine (A), thymine (T), guanine (G) and cytosine (C). These bases are intimately associated with each other and must always be paired in a specific way. A can only pair with T, and by elimination G with C. Thus DNA is characterized by a specified sequence of “base pairs” hung together in a long molecule. Finding out the number and particular sequence of base pairs in a DNA chain allows scientists to not only examine, but also manufacture a specific organism’s genetic code. Another way to look at this process is to visualize the base pairs as letters that are strung together into words, which then form sentences that in their entirety are the instructions for running an organism’s life.
Finding the letters constituting the genetic instructions for any organism is a daunting task. Fortunately, this is being helped by improved computer technology. Thus, the human genetic code (genome) has recently been cracked. It constitutes some three billion letters of DNA.13 This makes some of the other genomes being considered a relatively easier task. One is for the honey bee itself. A consortium led by Dr. Gene Robinson at the Unversity of Illinois, Urbana-Champaign has received $7 million to sequence the 270 million letters of Apis mellifera DNA. The justification for this includes looking at the insect’s symbolic language and social structure, as well as possible ways of helping the honey bee by providing instructions to better coexist with its diseases and pests.14 This sets the stage for developing genetically modified honey bees.
DNA Transfer Between Organisms: Transgenics
Finding the specific sequencing of DNA in genes, and their cloning or duplicating called “recombinant DNA technology,” has been used to better characterize and study them. Modification of specific DNA snippets within the same organism has a number of possible advantages as noted previously with respect to honey bee diseases and pests. Again, this is something that humans have accomplished over many years through traditional breeding programs. However, it is when a specific organism is genetically modified in a way not observed in nature that can raise an indignant eyebrow and a call for caution.
Biological organisms are given two scientific names. The first is the genus (capitalized) and the
second is the species (not capitalized).
Since the genus and species are usually based on Latin, they are
italicized when written. Organisms with different species names are thought
incapable of interbreeding, and so cannot exchange genetic material. Thus, Apis
cerana (the Asian honey bee) cannot interbreed
with Apis mellifera
(the European honey bee) because they are different species, although they have
a common genus (Apis). However, the African honey bee subspecies or
race (Apis mellifera
scutellata) readily interbreeds with its
European-Italian cousin (Apis mellifera ligustica) as they
both are of the same species (mellifera). This interbreeding has caused much confusion
in the
If this kind of situation occurs in closely related organisms, then it seems reasonable that genetic interchange between completely different species higher up the classification ladder, such as between an animal and a plant would be impossible. And in the natural world of multi-cellular “advanced” organisms this is usually the case. However, it is not true for “primitive” single-celled bacteria and viruses. Both have the ability to exchange DNA, and viruses in particular have evolved a way to insert their own DNA into organisms, which then can take over and run their host’s cellular machinery as the virus sees fit, often in a ruinous way.
One outgrowth of gene sequencing and duplication (cloning) through recombinant DNA technology is the possibility of employing bacteria to synthesize proteins found in other organisms. These might include human insulin for diabetes treatment, human growth hormone for Pituitary dwarfism or human interferons as cancer treatment. Another is to use viruses to produce proteins such as Hepatitis B virus surface antigen, then employed to immunize humans against that form of liver disease. Finally, it is possible to use bacteria or other unicellular organisms as hosts to manufacture totally new proteins, not found elsewhere in nature, and for which there may or may not be a use, a mind-boggling notion.
The next logical step is to produce foreign proteins in organisms other than bacteria. This is now routinely done with yeasts and plants. The intermediate organisms, however, continue to be bacteria, in many cases Escherichia. coli (found in the human gut and elsewhere) or the one mostly used with plants, Agrobacterium tumefaciens. The transfer of DNA from bacteria into a plant results in the formation of a true “transgenic” organism. This sets the stage for another revolution in agriculture comparable to the “green revolution” of the 1970s.15 This one, however, will not be based on conventional plant breeding, but the full-out use of GMOs.
References:
End of Part I
The Rise of Agribusiness
There are perhaps no greater advances in the modern era than those associated with agricultural production and distribution, which has dramatically increased availability of food and fiber worldwide. This is due to a mixture of agricultural and business practices, collectively known as “agribusiness.” One definition of this term is “all market and private business-oriented entities involved in the production, storage, processing, and distribution of agro-based products; in the supply of production inputs; and in the provision of services, such as extension, research, finance, and agricultural policies.”16
Agribusiness thus focuses on a constant search for greater efficiency and lower cost in “production, storage, processing, and distribution of agro-based products.” This runs counter to most natural biological systems, where effort is not necessarily concentrated and efficiency is only one of several considerations that sustain them. It is the juxtaposition of these two systems, often with increasingly diametrically opposed objectives, that is the root of the modern agricultural dilemma.
Concentration of crop plants is only possible where there is sufficient soil, nutrition and water. In most large-scale plantings, soil must be fertilized. This nutritional material (amendment) is often imported from other regions. Given sufficient water, pumped in by irrigation when needed, a great many plants can be grown on a given area of fertilized land. Genetic material has also been concentrated through the development of hybrid seed and specialized plant varieties. The resultant concentration of similar plants, however, called a monoculture, is susceptible to large-scale invasions by other organisms including weeds, insects, rodents, fungi, bacteria and others. Reduction, often called “control,” of these pest populations is a major challenge to modern agriculturalists. Traditionally, they have turned to an arsenal of chemicals known as killers (“cides”). Collectively these are called pesticides (killers of pests), but can be broken down and named based on what they are designed to kill (herbicides, insecticides, fungicides, rodenticides). The search for efficiency also results in a wide array of machinery designed to replace inefficient and costly hand labor in planting, harvesting, processing and marketing agricultural products. Collectively, the items listed above are the second part of the agribusiness definition, a “supply of production inputs.” Generally the basis for most of these is use of fossil fuels.
Similar inputs are prevalent in animal systems. Like plant crops, chickens, turkeys, cows and pigs are often concentrated to increase efficiency. Although some pesticides are used in these systems, more important is application of antibiotics to alleviate stress and control bacterial outbreaks that are encouraged by high host populations. Taken to its extreme, large concentrations of animals reared in smaller and smaller spaces to increase efficiency is called “factory farming.” Again, the inputs are mostly provided via fossil fuels.
Agribusiness is now exploring the use of GMOs to further increase the efficiency of the natural system being working with, especially since many of the traditional pesticides and antibiotics are losing effectiveness and becoming more expensive. This time, however, the reliance is not on fossil fuels, but on genetic modification to do the work. Instead of inputs, usually developed and transported from outside the system, the materials will come from inside the organisms themselves via genetic engineering.
A close reading of the above definition of agribusiness reveals a third aspect that is often taken for granted or ignored: “provision of services, such as extension, research, finance, and agricultural policies.” This brings into focus the role of government, which is increasingly looked toward to help agribusiness maintain its efficiency and profitability. Although many agriculturalists would like to think they are the “rugged individualists” of capitalism, relying mostly on their own resources for success, rigorous examination often reveals that nothing could be further from the truth. This is especially true when the history of the production of GMOs is carefully scrutinized. The road to the eventual development of these organisms is paved with large sums of public funding and a rich tradition of research and extension activities going back to the beginning of the land grant universities and establishment of the United States Department of Agriculture. Only recently have private companies gotten into the agricultural technology picture; how much of previous knowledge developed with public funding they can call their own in developing proprietary products is the subject of considerable debate.
Beekeeping is less amenable to efficiency increase than many other agricultural enterprises. With the advent of the moveable-frame hive in 1851 followed by the smoker and extractor, most beekeeping technology is still a 19th century phenomenon. Only the development of Instrumental Insemination is a 20th century development. The rise of antibiotics, however, provided a tool for beekeepers to help them control foulbrood diseases, which were not a problem until large concentrations of beehives became the norm.
Fossil fuels increased efficiency in beekeeping in a number of ways, especially in the transportation of colonies, resulting in bees being trucked to several pastures during a season and large-scale plantings for pollination. There is no better anecdote for this than the reply to a question about how to best feed bees protein. “Feed’em diesel fumes” uttered one influential beekeeper. This piece of advice referred to putting colonies on a truck and taking them to a source of natural pollen. In a further nutritional development, beekeeping was the recipient of agribusiness development in the Midwestern United States when large corn yields meant that high fructose corn syrup (HFCS) was available at a cost below that of the traditional supplementary bee food, cane sugar. Not only was it cheaper, but HFCS further increased efficiency because it already came in liquid form. Beekeepers, therefore, were able to avoid one of the most labor-intensive practices of their craft, mixing cane sugar and water to make sugar syrup.
It was a given that pesticides, the tool of choice for so
many agriculturalists to increase efficiency, would be anathema to
beekeepers. Beginning with arsenic dust
in the 1950s through the development of encapsulated methyl parathion (Penncap M®) and now the new generation of seed treatment
using imidacloprid, there continue to be honey bee
losses. Beekeepers loudly complained
about damage to their colonies and became so adamantly anti-pesticide that the
Beekeeping also had its share of governmental assistance. This included not only the pesticide indemnity program mentioned above, but also provision of bee inspection services, generations of help from a number of honey USDA bee research laboratories, and the services of numerous university research and extension education programs. Other forms of assistance included price supports, loans and crop insurance. In short, beekeeping too has become part of the agribusiness phenomenon.
Corporate Farming:
The first thing anyone taking a business class is usually taught is that one can classify enterprises in three ways based on ownership. These are the individual proprietorship, partnership and corporation. In the first two, the owners are individually responsible for the business and personally liable for any of their decisions. The corporation, however, is an entity in and of itself and the owners have limited liability. In addition, there are different, often quite favorable, tax consequences available to corporations. It doesn’t take long to realize that the corporation is often the preferred kind of business to invest in.
The Corporation goes back to at least the sixteenth
century. It is a charter, a privilege
given by a state to investors in return for taking risks. The American revolution
was to a great extent one against corporations that were given special rights
to exploit the riches of the
The rise in corporate power in the
Corporations feed on profits measured in money and they can
never have too much. One of the major
objections to these businesses is they put money before people. Money, in the form of profits, is increased
by reducing costs through increasing production efficiency and minimizing labor
costs, often accomplished by eliminating jobs.
Efficiency is also enhanced by merger; one company buying up another,
until all that remains are large conglomerates that can manipulate labor, markets, prices and increasingly, governments. Using immense wealth, influence, and
“personhood” status, corporations are able to lower costs by demanding
favorable tax treatment and labor agreements, as well as the use of public
resources at relatively little or no cost.
Given the advantages, it is inevitable that firms involved in
agribusiness, including most farmers themselves, have become incorporated. This may be one of the reasons that corporate
influence has been difficult to effectively control; almost everyone who owns
stock or a business in the
The power of corporations has taken agribusiness by storm in the form of consolidation fed by increasing wealth. An example is Dr. Mark Winston’s description of the fate of Garst Seeds, one of the first hybrid seed companies. “…Garst seeds became the only substantial seed company existing outside of a conglomerated corporate umbrella. Pioneer Hybrid was bought by Dupont in 1999, and Monsanto purchased the next largest independent seed company DeKalb seeds in 1998. Similarly Dow Chemical now owns Cargill Hybrid Seeds, United Agriseeds, and Illinois Foundation Seeds, and today’s two other major life sciences companies Syngenta and Aventis, own the remaining major seed companies between them.” He concluded that Garst Seeds is likely to be purchased by other conglomerates like BASF or Bayer, two international chemical companies that “need a seed outlet if the are to join the other biotechnology companies in the quest for transgenic profits.”19
In order to maximize profits, corporations need to gain control over resources that will then not be available to other corporations or “persons,” the citizenry. This usually comes about through patents, exclusive uses of what is called “intellectual property.”
In 1976, Mr. John
Moore had a cancerous spleen. It was
removed at the
The Strange Case
of John Moore and the Splendid Stolen Spleen is a study authored by Adam Stone.20 He
wrote, based on communication with Mr. Moore, “The issue that I find so bizarre
is that these guys could claim as theirs something that was totally mine,
genetically mine. They could claim it for themselves - claim ownership - but I
couldn't. And they had no obligation to inform me.”
The basis for Mr.
Moore’s stolen spleen is another decision by the U.S. Supreme court in the 1980
case of Diamond v. Chakrabarty.21 After a number of legal procedures and
appeals, the Court in a five to four decision allowed an oil-eating bacterium
to be patented by Dr. Chakrabarty.
Ironically,
according to Mr. Stone, a close reading of the Diamond v. Chakrabarty
decision reveals it is not about the patenting of biological organisms, but is
based on a narrow legal technicality associated with classification of bacteria
as “composites.” He concluded: “However,
as is often the case with scientifically-oriented rulings, the court's decision
was expanded well beyond the scope of the original controversy presented to the
court. As the processes by which organisms were created became both more
similar, and more easy to duplicate by other methods,
the product patent became the key tool of the biotechnology companies. Further,
Diamond v. Chakrabarty has already been successfully
applied to multi-cellular organisms as in the more recent Harvard case of the
OncoMouse.22
The Onco-Mouse is a transgenic animal, meaning that segments of
the genetic code of the mice have been replaced with new code which changes
their characteristics. Because they are
changed on a genetic level, their progeny share those same changed
characteristics. The Onco-mouse
is a research lab mouse which is genetically pre-disposed to develop cancer.
This saves the trouble of infecting the mice with cancer to do the research.
The product patent allows Harvard to not only charge
for the original Onco-mice which they create, but to
charge for their natural progeny as well. In other words, the product patent
gives the inventor the rights to the offspring of the genetically created
animal.”
The events
described above have literally opened a Pandora’s box. Biotechnology corporations are now on the
prowl for DNA of any value, which they can then patent for exclusive use and
profit. The increasing speed of DNA
sequencing and ability to modify the genetic material of a wide variety of organisms
through genetic engineering, coupled with so-called “bioprospecting”
in natural biological systems, has created a sense of urgency by companies to
enter the competitive field of transgenic products or be left behind.
It is the time
compression in the above scenario that is most troubling to many scientists and
others. It took nature millions of years
to create the variety of living organisms found on this globe. In the process, there were many failures, but
over time, a whole planet of successful life forms emerged, all connected
together in an intricate web. Now
humanity, in its haste to create its own transgenic organisms that may or may
not lead to products and profits for agribusiness corporations, risks
irrevocably changing this fragile living fabric.
16. Deutsche
Gesellschaft für Technische Zusammenarbeit (GTZ)
GmbH: (German Development Site), accessed January 22, 2003
<http://www.wiram.de/toolkit/hexagon/hexa-target-group-SMEpromotion-agribusiness.htm>
17. Korten, David. 1995. When Corporations Rule the World,
18.
19. Winston,
M. 2002.
Travels in the Genetically Modified Zone.
20. Stone,
A. 1996.
The Strange Case of John Moore and His Splendid Stolen Spleen: A Case
Study in Science, Technology, and American Courts, Submitted in partial
fulfillment of the Requirements of the Degree of Master of Arts in Political
Science, accessed January 30, 2003
<http://ist-socrates.berkeley.edu:4050/moore.html>
21.
22. Online Internet Editions of Upali Newspapers LTD ,
End of part II
The Nemesis Effect and Precautionary Principle
Competition by biotechnology corporations to identify genetic material and turn it into profits through use of transgenic organisms has produced an environment where speed is of the essence. The human search for rapidly increasing efficiency is at odds with the more complex sustainable strategies found in nature.. Thus, the GMO revolution finds itself in conflict as it tries to develop products much more rapidly than would be possible in natural systems.
Even relatively small changes in natural systems can result in circumstances
that are long-lasting and wide-ranging.
The adaptation of a system to any change is unpredictable. For example, who would have suspected that
constructing a dam on the Danube river in
Beekeeping has not been spared the Nemesis effect. Take for example the changes in apicultural
management dictated by introduction of the African honey bee in tropical
Plants are not immune either.
Consider the effects of purposeful introduction of kudzu for erosion
control in the southeastern
Genetically modified corn has already found its way to Mexico , the native land of Zea mays. “In the remote mountains of the southern state of Oaxaca , transgenic strains were found in 15 of 22 villages examined. Three to 10 percent of plants were contaminated in the fields tested. Scientists from the University of California at Berkeley last November used DNA testing to confirm that the plants in question were genetically modified.”29 Controversy rages over this situation as it is not known how genetically modified corn could reach into such remote areas of the country.
The two events described above show that plant GMOs pose a formidable challenge to those who would keep them out of the food supply. They also reveal how even a small amount of introduced genetic material could affect both the biologic and economic systems on which we all depend. Honey bees and beekeeping will most certainly be affected by this situation. Many plants, though not directly benefited by pollination, such as corn, are certainly genetically impacted by pollen foraging. It is conceivable that in some agricultural areas, honey bees in fact may be eliminated as they will be seen as prime biological “contaminators” in some GMOs.
So many examples of the Nemesis Effect in natural systems have been observed
that most now believe any change must be undertaken with extreme caution. At the
Secrecy and Corporate Profits:
The Wingspread document described above runs counter to an agribusiness
environment where corporations are vying for dominance in genetically
engineered products. Again, in order for
these activities to be profitable, there must be some exclusive use provision,
such as a patent. In addition, the
processes used are often classified as “proprietary,” the information on how
they operate and what constitute them being trade secrets. Perhaps the ultimate form of secrecy is
elimination of any reference to GMOs on labels of
food that contain them. This has not
gone down well in many First world countries, like the
This brings into focus profits, money left over from product sales after the costs have been subtracted. The costs are based on cash or monetary expenses, according to standard accounting practice. Because corporations have such privileges and power, however, many of the expenses are not taken into consideration. These include favorable tax treatment and what economists call “externalities,” costs (usually environmental) that are not shown on financial statements and so are ignored when determining profits. For example, a polluter may consider air or water free. Dumping pollutants into the air or water is a way to dispose of wastes that does not result in a large expense, but this action involves costs because it affects alternatives that others face, such as making them forego clean water. One could say that the polluter imposes some costs of production on others, although this use of the word "cost" differs from the normal meaning (accounting practices). Those who bear these costs are usually not involved in the choice. In its pure meaning, these costs are choices that affect many, but made by a few who are generally not affected.32
The above is an explanation in economic terms of a phenomenon known as “The
Tragedy of the Commons.” Take, for
example, applying this principle to visiting a natural heritage site: “The National Parks present another instance
of the working out of the tragedy of the commons. At present, they are open to
all, without limit. The parks themselves are limited in extent -- there is only
one
The bottom line is that many of the true costs of production are not borne
by corporate persons, but instead are really levied against other biological
persons or natural systems. In the
The development of GMOs is expansion into the new genetic frontier. It demands a revolution in thinking as expressed in the elements of the precautionary principle described above. The possibility that genetically-modified organisms are “ultimate pollutants” exists.36 Once they are let loose into the environment, the Nemesis effect will take over; there will literally be no way to put the genetic genie back in the bottle. At the same time, the potential environmental costs if things go wrong will in all probability not be borne by those who have caused the situation. The executives and scientists working under the corporate “personhood” umbrella will be protected, even as they are encouraged, to push the envelope in the search of quick profits. If something goes awry, the real people and other organisms of the earth will be left to pick up the pieces and suffer the consequences. There are many examples of this phenomenon from the tax payer savings and loan bailouts of corporations in the 1980s to the bursting of the energy and high technology stock market bubble in the 1990s, resulting in loss of retirement benefits and jobs by employees, and savings of small investors.
Governmental Regulation:
Government and business have always been uncomfortable partners. One of the most tenacious myths is that known
as liassez-faire, that businesses are bound to make
good decisions and in the process do not need governmental regulation or intervention.37
In fact the opposite is often true: “It is by the interaction of
these two dominant forces in our society that much of the economic and
political present has come to exist.”38
Regulations by governmental bureaucracies in the biological arena are recent. Only in 1970 was the Environmental Protection Agency (EPA) established, yet today it has a several billion dollar budget with thousands of employees.39 The EPA, along with the National Institutes of Health and Food and Drug Administration, regulates GMOs. “The quandary that government regulators find themselves in is simple; protecting human and environmental health should be rooted in objective, data-based science, but in practice politics influences regulatory decisions.”40 This situation does not bode well for the precautionary principle, as the influence of corporations in all aspects of government and the regulatory authorities continues to grow.
Grassroots Organizing:
Given the state of affairs described above, groups have formed to help put people ahead of both corporate and governmental interests as the GMO debate heats up. Many are using the World Wide Web to get their messages out. ReclaimDemocracy.org is a non-profit organization that has as one of its main objectives to revoke corporate personhood.41 Another is the effort to label genetically engineered foods mentioned earlier; it is estimated that 93 percent of U.S. citizens want the same right as those of the European Union, Japan, and Australia and many other countries to know if their foods have been genetically engineered.
It is not just lay citizens who are organizing. The Union of Concerned Scientists founded by faculty members and
students at the Massachusetts Institute of Technology (MIT) has also developed
a statement on GMOs.
“Our
current priorities are to: 1) Convince the federal government to establish
regulations to protect the food supply and environment from contamination by
engineered pharm and industrial crops; 2) Persuade
the Environmental Protection Agency to conduct rigorous reviews of ecological risks
and require strong resistance-management plans before approving crops producing
Bt toxins; 3) Press the federal government
to strengthen oversight of environmental risks of engineered fish; and 4) Urge
the Food and Drug Administration to require safety testing and labeling before
biotech foods are allowed on the market.” 42
Five hundred fifty nine
scientists from 69 countries have signed an open letter to governments of the
world: “We, the undersigned scientists, call for the immediate suspension of
all environmental releases of GM crops and products, both commercially and in
open field trials, for at least 5 years; for patents on living processes,
organisms, seeds, cell lines and genes to be revoked and banned; and for a
comprehensive public enquiry into the future of agriculture and food security
for all. Patents on life-forms and
living processes should be banned because they threaten food security, sanction
biopiracy of indigenous knowledge and genetic
resources, violate basic human rights and dignity, compromise
healthcare, impede medical and scientific research and are against the
welfare of animals.”43
23. Bright, C. 1999. The Nemesis Effect: World Watch (May/June), Web Page accessed January 30, 2003 <http://www.worldwatch.org/mag/1999/99-3.html>
24. Health and Energy Company,
25. Urban
Governance World Wide
Web Page, accessed January 30, 2003 <
http://www.gdrc.org/u-gov/precaution-2.html >
26. Flottum, K. 1999. Bee Culture (February), accessed
January 30, 2003 http://www.beeculture.com/beeculture/months/99feb/99feb1.html
27. National Council for Science
and the Environment World Wide Web page, accessed January 30, 2003 http://www.ncseonline.org/nle/crsreports/agriculture/ag-101.cfm
28.
29. Mindfully.org World Wide Web
Page, accessed January 30, 2003
<http://www.mindfully.org/GE/GE4/Mexican-Maize-Pollution14mar02.htm>
30. Urban Governance World Wide
Web Page, accessed January 30, 2003 <http://www.gdrc.org/u-gov/precaution-3.html>
31. The
Campaign to Label Genetically Engineered Food World Wide Web Site, accessed
January 31, 2003 <http://www.thecampaign.org/>
32. Shenk, R. Cyber-Economics: An Online Text Book,
33. Fischer,
Bud.
34. National Public Radio World Wide Web Page, accessed February 4, 2003 <http://www.pbs.org/kera/usmexicanwar/dialogues/prelude/manifest/d2aeng.html>
35. Korten, D. Ibid. p. 25.
36. Winston, M. Ibid. p. 93.
37. Laissez-faire Capitalism World Wide Web Page, accessed February 4, 2003 <http://www.lfc.net/>
38. McQuaid, Kim. 1994.
Uneasy Partners,
39. Environmental Protection Agency Home Page, accessed February 4, 2003 <http://www.epa.gov/>
40. Winston, M. Ibid. p.63.
41. ReclaimDemocracy.org World Wide Web Page, accessed February 4, 2003 <http://reclaimdemocracy.org/> and <http://reclaimdemocracy.org/personhood/index.html>
42. Union of Concerned Scientists World Wide Web Page, accessed February 4, 2003 <http://www.ucsusa.org/>
43.
End of Part III
Food Security:
Suggested benefits of genetic engineering in producing transgenic plants
involve increasing the supply of food and fiber. In addition, there is the argument that this
technology will require fewer herbicides and pesticides.44 Within this context it is important to
remember the legacies of what is called the “green revolution.” It too was expected to increase
agricultural production based on advances in plant breeding, and did so with
phenomenal success.45
However, it has been deemed a failure in human terms by many observers
because in the course of improving production, the increased costs due to
required fertilizers, herbicides and pesticides marginalized many farmers, who
were forced to sell their land to larger-scale producers or go deeply in
debt. In many regions, this resulted in
large-scale abandonment of rural areas in favor of urban centers, a migration
causing huge problems, especially in the developing world. The agricultural situation continues to
deteriorate in
The implied benefit of the green and now the new transgenic revolutions is
that they will alleviate world hunger and provide food security. However, observers point out that the supply
of food is not so much the problem as distribution of existing stockpiles. These are often affected by political and
economic conditions that have little to do with production.47 Another touted benefit is that
genes producing certain vitamins could be incorporated into the food supply,
resulting in improved health. One
example is inserting a gene for producing vitamin A into rice, thus preventing
blindness in areas of world with a condition called “avitaminosis.” This technology is directed mostly at the
developing world. In this particular
example, through the efforts of its developer, the patent rights on “golden
rice” have been waved by Monsanto Corporation.48 However, detractors point out that
there are plenty of alternatives available and implementation of this
technology is not worth the ecological and economic risks.49
Both food security and conditions such as avitaminosis are valid concerns of the third world. However, it is important to realize that many GMOs are not destined for human food, but for animals to produce protein. The majority of GMOs are produced in first world countries, which then often seek markets for these products in the developing world. Farming is quite different in these two arenas and the effects are bound to be “especially harsh in the countries of the southern hemisphere where farming is an extensive activity involving many more people than it does in industrialized countries.”50
Science and Secrecy:
A difference between the green and genetic revolution is that the former was funded mostly using public funds, whereas the latter is much more allied with private, corporate support. This is perhaps nowhere better seen than in the great universities of the world. As these entities continue to see erosion in public support, they have been forced to turn toward the corporate world. Generally, scientific advances have been based on all parties sharing information, and this has been fostered by the openness of most universities and the scientists employed in them. The new paradigm of corporate secrecy, however, is changing this paradigm rapidly, and many are concerned that this will impact the future of the practice of science in institutions of higher learning.51
Narrowing the Genetic Base:
A major concern of GMOs is that using them would further narrow the genetic base of the food most of us depend upon. There is the danger that certain varieties, by becoming more dominant through genetic engineering, would be relied on to the exclusion of others, setting the scene for a potential catastrophe should they fail. This has already happened to an alarming degree in conventional agriculture. The vegetables, fruits, and in many cases animals, that we all depend on for survival represent a small part of the potential genetic pool; one disease or pathogen, therefore, could affect almost a hundred percent of a class of food.
A classic example of the effects of a narrowed genetic base is the Irish
potato famine. As potatoes imported from
the
“In 1845, the fungus Phytophthora infestans arrived accidentally from
“The genetic vulnerability of corn monoculture was demonstrated in 1970 when
much of the
Honey bees are
also at risk. Nature has built into honey
bee elaborate behavioral mechanisms to prevent a narrowing of the genetic base.
Most significant is the fact that queens mate with 10 to 17 drones in the
air. Effectively controlling mating
activity has been a goal of many queen breeders, but often is impossible unless
some degree of isolation is established. This usually has best been
accomplished on islands.
There is another
risk when the honey bee gene pool becomes limited. It is known that as
inbreeding occurs there is more chance for diploid drones to be produced. These
individuals are homozygous (have the same gene form or allele) at the sex
locus; only those with different alleles become females. All diploid drones are
destroyed by the colony in the larval stage and the queen is then obliged to
lay another egg to replace them. Colonies suffering this condition, called
"inbreeding depression," may have 50 percent less developing brood.
As a consequence, they cannot build enough population to produce surpluses, and
in some cases may not survive
According to Dr. Marion Ellis at the
Finally consider this. “The banana may be the world's most popular fruit, but in scientific terms it is a sterile mutant - the edible version of the fruit has no seeds. Bananas are cultivated by replanting cuttings from their stems. The lack of genetic variation means pests or diseases can wipe out entire varieties, with no way of developing new ones to replace them.”55. The only thing thought to be available to save the banana will be a heavy dose of genetic engineering. In other words, in the future it is conceivable that all bananas will be GMOs.
GMOs and Honey Bees:
It is no secret that the inhabitants of the European Union (EU) are much
more concerned about GMOs than are citizens of the
Dr. Ingrid Williams of IACR-Rothamsted, Plant and Invertebrate Ecology Division, Harpendent, Hertfordshire UK has described the EU’s regulatory framework with respect to GMOs and bees.56 Two areas of risk assessment concern honey bees, 1) effects on them as non-target organisms, and 2) the impact of bee visits (pollination or gene flow) on plants..
The Impact of GMOs on Non-Target Organisms:
Honey bees are the classic non-target organism with reference to pesticides. If caught foraging and thus exposed when chemicals are applied for almost any reason in the daytime, honey bees will probably suffer. The same will be true for GMOs as honey bees will be out in most fields. Direct effects may arise if bees ingest toxic proteins that are found in pollen, nectar, residue or honeydew secreted by GMOs. Indirect effects can occur if flower morphology, its attractiveness or its nutritional value change. Among questions asked by Dr. Williams are: 1) will bees visit the GM plant for pollen/nectar/honeydew/resin? 2) are new proteins expressed in these plant products? 3) is bee survival, development for foraging behavior affected?, and 4) will management of the crop have any effect?
Pollen grains are really tiny packets of genes. Only when there is gene expression (a protein is produced in pollen as directed by that gene) would there likely to be an effect in the bees’ consuming pollen. Expression can also take place in other plant parts. Unfortunately, Dr. Williams says there are few measurements of expression in either pollen or nectar, and none for the resins, gums or exudates bees might collect from transgenic plants.
DNA is not toxic to bees and there is no evidence that transfer of intact genes to other cells occurs in animals, either from bacteria in the gut or other foodstuffs. The risk of gut bacteria acquiring antibiotic-resistance through horizontal gene transfer also appears small, but cannot be discounted. For this reason, according to Dr. Williams, the practice of using antibiotic marker genes is due to be phased out by 2005.
Most GMOs currently in use are developed for herbicide resistance. The modified plants produce an enzyme that breaks down the herbicide, making it non-toxic. Dr. Williams says this is not likely to be a problem with honey bees as they do not have the herbicide as an integral part of their body. This is touted by promoters as an important way to limit use of herbicides in the natural environment.
Insecticide-resistant GMOs is another situation Dr. Williams says. Plants may be modified to contain Bt toxin, proteinase inhibitors, and chitinases. The benefit of such plants is that they require little or no insecticide application, decreasing, or in some cases eliminating, chemical application altogether. In a similar argument paralleling that related to herbicides, it is suggested this is a potential benefit to honey bees because it minimizes their potential exposure to harmful chemicals. In addition, the materials mentioned above are generally far less toxic in general than so-called hard or synthetic insecticides.
Bt is the bacterium Bacillus thuringiensis. It comes in different forms, which produce specific toxins, often attacking only one insect order. There are particular ones for the orders diptera (flies and mosquitos), lepidoptera (caterpillars), and coleoptera (beetles). The material has been shown to be relatively non-toxic to the order hymenoptera (honey bees and bumblebees). One formulation is even marketed to control wax moth larvae in honey bee comb, but for economic reasons is not in widespread use. Bt is a favorite for organic gardeners; one of the fears of that community is that use of Bt in genetically-modified plants will result in widespread resistance, making that “biopesticide” no longer functional.
Proteinase inhibitors or PIs are substances that keep insects from digesting their food; thus, they starve while in the midst of plenty. Honey bees and bumblebees also use PIs and so may be susceptible to any that are expressed in modified pollen. Dr. Williams reports that one study on modified rape PI fed to bees in honey for 15 days showed no effect on lifespan or learning ability until the dose was 100 times that found in the leaves.
Chitin is an integral part of the insect’s hard outer covering or cuticle; chitinases are enzymes produced by plants that attack the
cuticle rendering the insect’s armor casing less effective and affecting its
ability to sense the environment.
Although no adverse effects on olfactory learning or survival of bees
have been seen, according to Dr. Williams, a reduction in foraging activity on
sugar solutions containing chitinase was
detected. The bottom line so far is
encouraging, Dr. Williams concludes: “There is no evidence to date from the
extensive growing of GM crops in the EU or in
Gene flow, the movement of plant genetic material either through pollen or seed, is an important risk factor in GMOs. The possible spread of genes from GMOs to non-GMOs might mean several things. For example, genes from a plant genetically engineered to resist herbicides might find their way into weeds, causing them to be resistant as well. Gene flow cannot be totally eliminated when bees are in a field, but might be minimized, according to Dr. Williams, using certain techniques such as trap crops or separation of plants spatially or temporally. Crop plants that produce little or no pollen or incompatible pollen are also possibilities. These, along with other ideas such as hybridization barriers or alteration of flower rewards (pollen and nectar), and bloom shape or color will not be easy to achieve and their economic viability is not clear. Dr. Williams concludes: “Any technological advances that reduce the amount of pollen or nectar available to bees, particularly in widely-grown crop plants could have far reaching consequences for the viability of bee populations, crop pollination and beekeeping.”
44. Biotechnology Industry Organization World Wide Web Page, accessed February 7, 2003 <http://www.bio.org/foodag/brochure/Environment1.asp>
45. Ganguly, S. “From the Bengal Famine to the Green Revolution,” World Wide Web Page, accessed February 7, 2003 <http://www.indiaonestop.com/Greenrevolution.htm>
46. Sharma, D. 2000. “Green Revolution Turns Sour,” New Scientist, Ag BioTech InfoNet World Wide Web Page <http://www.biotech-info.net/sour.html>
47. Rosset, P. et.al. 1998. “Lessons From the Green Revolution,” Institute for Food and Development Policy World Wide Web Page, accessed February 7, 2003 <http://www.foodfirst.org/media/opeds/2000/4-greenrev.html>
48. Biotrin World Wide Web Page, accessed February 28, 2003 <http://www.biotrin.cz/enpages/rice.htm>
49. Institute for Food and Development Policy World Wide Web Page, accessed February 28, 2003 <http://www.foodfirst.org/progs/global/ge/goldenriceblind.html>
50. Ali
Brac de la Perrière, Robert
and Franck Seuret.
2000. Brave New Seeds: The Threat
of GM Crops to Farmers.
51. Nelkin, D. 1992 Patents On Some Science Findings
Would Present Problems. The Scientist 6[23]:0, Nov. 23, 1992 accessed May 28, 2003 < http://www.the-scientist.com/yr1992/nov/opin_921123.html>
52. The Irish Potato Famine, Environmental Protection Agency World Wide Web site accesses May 29, 2003 <http://www.epa.gov/history1/topics/perspect/potato.htm>
53. Alternative Health Talk World Wide Web Page accessed May 29, 2003 <http://www.alternativehealthtalk.com/Herbal%20Genetic%20Diversity%20frontier%20coop.htm>
54. Ellis,
M. Bee Tidings, University of
55. The Campaign to Label Genetically Engineered Food World Wide Web Site accessed May 29, 2003 <http://www.thecampaign.org/News/jan03t.php#banana>
56. Williams, I.H. 2002 “The EU Regulatory Framework for GM Crops in Relation to Bees,” Bee World 83 (1): 24-35.
End of Part IV
GMOs and Bee Products:
According to Dr. Ingrid Williams of IACR-Rothamsted, Plant and Invertebrate Ecology Division, Harpendent, Hertfordshire
How much genetically-modified pollen will show
up in bee products is an unknown, according to Dr. Williams. Honey bee flight patterns and distances are
not well known. Studies suggest flight
ranges up to 5 kilometers in bumblebees and 10 kilometers in honey bees. She
says surveys of marked honey bees foraging from colonies placed within a
landscape of several crops of oilseed rape in the
The concerns about GM pollen in honey have to do
with food safety and possible horizontal gene transfer to human cells. There is a chance that genes that code for
toxic proteins in pollen could find their way into honey. The species and number of pollen grains found
in honey are variable. In addition, the
processing of honey is different across the spectrum of beekeeping operations. In most cases EU honey is not as filtered as
it is in the
Dr. Williams concludes that risk assessments are needed to ensure that a high level of toxic proteins that are resistant to degradation in the human and bee gut does not make its way into honey. Fortunately, as reported earlier for honey bees, no evidence exists that antibiotic marker genetic material has been transferred horizontally in either the human or honey bee gut.
Marketing and Labeling GM-free Bee Products:
The marketing of EU honey containing GM pollen is a real tar baby, according to Dr. Williams. Although the real risks of food safety are small, there exist public concerns about GM foods in general, and certain populations wish to completely avoid them at all costs. Thus, many supermarkets have removed GM products from their shelves. Similarly, the UK Honey Association, which purchases and packs honey, has insisted that it be GM-free. Although there is currently no definition for GM-free foods, honey labeled as GM-free found to contain GM material would be in breach of current legislation, according to Dr. Williams. Unfortunately, testing by individual beekeepers is prohibitive in cost; many simply cannot certify their product at the present time.
To meet the requirements, the UK Honey Association suggests beekeepers locate their hives at least six miles (9 kilometers) from GMHT oilseed rape or other GM crops. Dr. Williams concludes: “Economic impacts of GM crops on organic farmers, non-GM farmers and beekeepers are not part of the regulatory procedure for ‘safety’ evaluation of GM crops. Liability for any GM ‘contamination’ has not been resolved and beekeepers are not compensated for the extra work and expense of moving their hives.”
Current directives (Regulation 258-97) call for all foods containing GM material (novel DNA or protein) in the final product to be labeled.58 A novel food is one that has not been consumed by humans to any extent in the EU before. The current view of the European Commission is that honey, containing GM pollen, does not constitute a novel food. However, GM pollen sold by the health food industry would fall under the guideline. Another issue of importance is traceability of GM products. Dr. Williams describes the EU’s labeling regulations as being in great flux and in the future, it will no doubt continue revising its directives in this arena.59
GM Oilseed Rape, GM Maize and Bees:
In her final article on GM crops and bees, Dr. Williams examines in detail the new GM cultivars of oilseed rape and maize, already available in the EU or grown in large-scale field trials prior to commercialization.60 Honey bees are agents of both self-pollination and cross-pollination of GM oilseed rape. They also provide for pollen and gene flow within and between crops and from oilseed rape to weedy relatives with which they are compatible. Oilseed rape pollen is a component of honey derived from the crop. Thus, Dr. Williams concludes, “Risk assessment of GM oilseed rape must therefore take account of the interactions between bees and the transformed crop.”
Oilseed rape is modified for herbicide tolerance (GMHT). As such it is not expected to affect honey bees. Concern, according to Dr. Williams, is more about impact on the environment and farmland biodiversity.
GM maize is engineered both for herbicide (GMHT) and insect resistance (Bt maize), especially against the European corn borer (Ostrinia nubilalis). Maize is known for its enormous quantities of pollen. It produces no nectar. In contrast to oilseed rape, bees do not pollinate maize; they never visit the female flowers. GMHT maize is considered to be low risk to both human health and the environment, according to Dr. Williams. Bt maize is also low risk.
Both GM oilseed rape and maize are part of a
four year (1999-2003) research project in both
Commercial planting of GMHT crops will not take place in the
Although it appears that GM crops in the
Conclusions:
In this series of articles, I have provided an outline of the major subjects that constitute the source of the current debate about genetically-modifed organisms or GMOs. With the discovery of the structure of DNA, it has been possible to decode the language of all life. Incredibly, this consists of only four letters. Because the same letters are used by every organism, they can be interchanged using genetic engineering technology. As a consequence it has become relatively easy to create true transgenic individuals, something extremely rare in natural systems. Most of the successes so far in this growing field are with plants. And because plants and honey bees are so closely interlinked, it is logical to ask how the technology of genetic engineering might affect both the insects themselves and their keepers.
Although the history of the discovery of DNA, and the grand tales that characterize much of genetic engineering are those often of heroic scientific discovery, they bring with them a set of circumstances that promises to irrevocably change both the economic and natural environment. Producing GMOs has transformed much of agricultural research from a public one, based on non-profit institutions with open communication, to a private enterprise filled with competition and secrecy. At the same time, socio economic shifts in agriculture have created another environment, the corporate farm (agribusiness), which seeks to increase profits often at the cost of the traditional human labor that has characterized the activity in the past.
The global corporatisation of agriculture, protected by the rights of “personhood” and given legal sanction by the highest courts in the land, has created an environment out of which has come great good. What was once considered a benefit for all (protection by the state), however, appears to be a pendulum that has swung too far toward amassing power by corporate entities at great potential cost to biological persons and the environment.
History has shown that corporate, like any kind of power, has the potential to corrupt, and the search for profits to the exclusion of all else can bring with it ruinous consequences. There seems to be big potential for this in the current environment, where speed is of the essence in producing and marketing GMOs, and precaution often seems to be an afterthought. GMOs released into the environment, through the Nemesis Effect, are certain to impact the natural biological systems we all depend on in ways we do not yet recognize.
It is now impossible to put the genetic genie back in the bottle. GMOs are a fact of life in most of the developed world and their impact is increasing every day through corporate research and sponsorship. Genetic engineering techniques exist for practically every conceivable cultivated plant species. That does not mean that citizens do not have the power to retake some of the initiative, however, and there are several movements that are attempting to facilitate that. The most important and strident ones are those that are re-examining what “personhood” of biotechnology and agribusiness corporations really means, and demanding that genetically modified food be labeled for what it is.
There are many books and articles that seek to
explain the genetic revolution to various audiences. Dr. Paul F. Lurquin Professor of Genetics at
“Unfortunately, nobody seems to care enough about the science of plant transgensis to explain it to the public. This must change because the bottom line is with the consumer: If he or she decides not to buy transgenic products, they will not be sold.
“It might be argued that my ethical problems with biotech companies are as naïve and as subjective as Prince Charles’s theistic opposition to biotechnology. After all, industrial research and development funds have made possible the synthesis and commercialization of products such as antibiotics and plastics. These are regarded as good by most people because they make life easier and better for just about everybody on the planet. However, I find it impossible to characterize herbicide-tolerant and insect-resistant crop plants in the same way. These products are not making the life of most of us easier and better. Corn is not more abundant, cheaper, or better than before biotechnology, and neither is canola oil nor tofu. So far, applied plant biotechnology has been neutral (or negative if one considers the backlash against it) in what it has offered to the public. It is legitimate to ask what the vision of biotech corporations really is.
“Finally, on an optimistic note, I cannot stress enough the impact that genetic manipulation has had and still has on basic plant biology. This also holds true for the field of human medicine. Recombinant DNA and gene transfer techniques have totally changed the way we study living systems and understand them. As Time magazine put it once, gene technology is indeed an ‘awesome skill.’ It is up to us to use it wisely.”63
References:
57. Williams, I.H. 2002 “The EU Regulatory Framework for GM Foods in Relation to Bee Products,” Bee World 83 (2): 78-87.
58. Regulation (EC) No 258/97 of the
European Parliament and of the Council of 27 January 1997 concerning novel
foods and novel food ingredients
Official Journal L 043 ,
14/02/1997 P. 0001 – 0006, webstie
accessed August 15, 2003 <http://europa.eu.int/smartapi/cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&lg=EN&numdoc=31997R0258&model=guichett>.
59. <http:// www.europa.eu.int/comm/food/fs/biotech/biotech01en.pdf >
60. Williams, I.H. 2002 “Cultivation of GM Crops in the EU, Farmland Biodiversity and Bees,” Bee World 83 (3): 119-133.
61. United Kingdom Department for Environment Food and Rural Affairs, accessed August 15, 2003 <http://www.defra.gov.uk/news/issues/2003/gm07a.asp#CostsBenefits>.
62. Pham-Delègue, M.H., et. al. 2002. “Direct and Indirect Effects of Genetically
Modified Plants on the Honey Bee,” in Honey Bees: Estimating the Environmental Impact of
Chemicals,
63. Lurquin, P. 2002. High Tech Harvest: Understanding Genetically Modified Plants, Boulder, CO: Westview Press, p. 164.
Reply to letter by Jess A. Gwinn in August, 2003 issue of American Bee Journal
Dear Joe,
The letter by Mr. Gwinn in the August issue says that
corporations have never been declared legal persons, and this is a common
misconception. That it is only stated in
the head notes of the case of
I agree with Mr. Gwinn. It is the reason for my statement, “Deeper inquiry into this subject indicates that although this has become a standard interpretation, the decision was more slanted towards benefiting corporations because of rule making by bureaucrats, rather than due process of law.” In other words, the case has been used by corporations to garner huge amounts of influence and power, even though their “personhood” is not part of the law. This is the basis for protest by such organizations as ReclaimDemocracy.org.